项目信息
申报院校:西安交通大学
项目名称:制造业产品缺陷视觉检测技术
项目简介
传统机器视觉检测技术是基于程序化和规则的方法,通常需要预先穷举所有缺陷种类,并且为每种缺陷提供充足的人工标注。传统技术存在样本采集成本高昂、环境适应性差等问题。
本项目提供一种基于人工智能的新型视觉检测技术,利用数据驱动的深度学习算法,使视觉检测技术开发流程标准化,极大地缩短了开发周期与开发成本,通过迁移学习等关键技术快速地应用到多种制造行业,在不同行业所积累的数据池又将反哺技术进步,进一步构筑行业技术壁垒。本团队深耕于工业与智能制造领域,充分了解制造业产品缺陷种类繁多、缺陷数据少等特点,创造性地提出了正样本建模等核心解决方案,极大地减少了对缺陷样本以及标注的需求。本项目提出的技术方案具有开发周期短、适用性可迁移性较强、落地成本较低等特点。
所属类别
人工智能
市场前景
中国机器视觉市场广阔,近年来企业数量增长迅速,但尚未出现有主导地位的龙头企业。在制造业中,消费电子,汽车,半导体是视觉检测应用最广泛的三大领域。目前消费类电子行业和半导体行业的视觉检测应用市场规模年增长率在25%左右,而在标准化程度更高的汽车制造领域,市场规模增速将近30%。相比人工目检,机器视觉技术优势明显,具有精确性强、效率高,是工业制造的未来发展方向。此外,机器视觉易于实现信息集成,其下游应用市场还包括计算机集成制造等。
项目需求
面议
合作咨询请联系韩先生:18918459526